Squats & patellofemoral force

The fitness industry is full of rules, and while many are created with the best of intentions, you’ll find that the bulk of them are formed without a single shred of scientific evidence, sound reasoning or even a basic understanding of how people actually train. My recent read of the book Risk: The science and politics of fear by Dan Gardner (1), and a few posts online discussing knee position in the squat got me thinking about the parallels between perception of risks and exercise prescription.

In Risk, Gardner took the media to town over the fear mongering reporting that dominates the news today, and questions our ability to calculate risk when making decisions. The media often reports statistics in absolute amounts, focusing on single individuals and events, and in doing so fails to give proportion. While stories of individuals obviously tug on the heart strings, in doing so we’ve skewed our ability to determine and account for risk.Using the horrific terrorist attacks of 9/11 as an example, he shows the shift away from air travel back to the car, and how the ensuing spike in car travel resulted in an estimated 1600 extra unnecessary deaths that year, just from the new-found fear of flying. We focused on the single, inexplicable event, and in doing so, put ourselves at greater risk: we didn’t consider the proportion, the actual likelihood of it happening again, and we failed to account for the relative risk between the situations (driving vs flying).

So what do terrorist attacks have to do with squats and patellofemoral force?

Well, very little directly, although if they get caught they will definitely have a little more time to spend in the squat rack. The same human behaviour that makes us act irrationally and worry without taking into account the proportion when considering statistics seems to have crept over to the exercise world when prescribing and teaching specific lifts. Anyone who has completed one of the common certification courses, regardless of organization, or has an internet connection for that matter, has probably seen the written-in-stone rule that the knee should never cross the toe when squatting. While solid evidence for this advice is never given, it is usually associated with a smorgasbord of catastrophic events leading to the complete obliteration of the knee. Once people get out in the real world they see numerous examples of lifters squatting with their knees over their toes, with no pain or disastrous consequences. This usually gets the gears grinding and as they think a bit more about it they find other examples, such as going up and down stairs, where the knee passes the toe with no ill effects. Better yet, how many of these trainers taught the squat with this golden rule, only to turn around and prescribe lunges without thinking twice about it, where the knee passes the toe and then some?

Patellofemoral compressive force explained

The argument against the knee passing the toe usually hinges on patellofemoral compressive force and the potential for this force to contribute to both acute pain and long-term degenerative changes at the knee joint. Patellofemoral compressive force (shown below) is due to the interaction of the patella (knee cap) with the femoral condyles, which is facilitated by the positioning of the patella in the quadriceps and patellar tendon. As the knee moves into flexion (the descent of the squat), the patella moves onto the femur, and first contacts between 10-20 degrees of flexion (2), and increases in contact area as the knee flexes. Patellofemoral compressive force generally increases as the knee flexes, peaking around 85 degrees of flexion (4) and remaining relatively constant as the knee moves deeper into flexion (3).

Knowing what patellofemoral force is, why would we expect the knee going over the toe increase it? If you squat so your thigh is parallel to the floor (a common range of motion recommendation, although I prefer full squats if possible), and allow the knee to pass the toe you will have a greater degree of knee flexion when you achieve the parallel position than if the knee stays over the foot. We know that patellofemoral force increases with knee flexion to a point (3), and based on this, a slightly higher PF compressive force could occur with the knee over the toe.

How much force is too much force?

Excessive or repetitive patellofemoral femoral forces are thought to contribute to knee pathologies and pain, as it provides stress to the articular cartilage of the patella and the patellar surface of the femur; however, we have no idea just how much force is too much. Just like we saw with the examples from the book Risk, considering the absolute value of a force really doesn’t tell us much about the risk of injury. Just because one position, in this case the knees over the toes, could be associated with elevated patellofemoral compressive force doesn’t necessarily mean that the lifter will be exposed to injury or that the exercise is any more dangerous than when performed with the knee remaining over the foot.

Looking at that interaction between the patella and the knee cap further, Escamilla (3) demonstrated that during 20 to 90 degrees of knee flexion, patellofemoral stress increased. Stress (force/area) is important in this case, as it considers both the patellofemoral compressive force we’ve been talking about, but also considers the actual surface area of contact between the patella and femur, which we know to increase as the knee flexes (5). The case above suggests that, during knee flexion of 20-90 degrees, the rate of increase in patellofemoral compressive force is greater than the increase in contact area between the two surfaces, which leads to the increase in stress. At higher degrees of knee flexion, patellofemoral stress can actually plateau, or even decrease, as patellofemoral compressive force peaks around 90 degrees while patellofemoral contact area can increase further, allowing the force to be applied to a greater area and ultimately reduce stress. So going back to the knee over the toe squat, the higher knee angle encountered when squatting to a parallel position could be associated with the same (6), if not lower patellofemoral stress (3). Better yet, this paper concluded that athletes, from a patellofemoral perspective, are actually safe to perform deep squats past 90 degrees of knee flexion. So we dropped the ball again, not only did we consider absolute forces with no understanding of the tolerance of the tissue or the amount of force required to produce injury, but we also neglected to consider changes in contact area and how those interact (stress).

Without a clear idea of the amount of force or stress required to produce an injury, it’s reckless to make sweeping statements about exercise form. The same loading that we claim could be the cause of injury could be a sufficient dose to produce positive adaptations that ultimately improve function. If you’re teaching appropriate hip hinging (sitting back) in the squat, a little forward knee translation in the end likely won’t be problematic. If you’re doing quarter squats by shuffling your knees forwards and backwards, then you probably have bigger issues to worry about than patellofemoral force anyway. So as someone who performs full squats pain-free, I’ll continue to do so and won’t be worried about any patellar issues down the road. All biomechanics aside, while the numbers tell one story, any pain or dysfunction experienced in the squat needs to be addressed irrespective of what the numbers might say.


    JT says:

    Dan, this is why I love coming to your site. The article provides reasoning and understanding of patellofemoral force instead of a trainer (or writer) saying something like, “don’t let your knee go passed your toes. I don’t know why just don’t do it,” LOL.

    First, if the patellofemoral compressive force peaks around 90 degrees would there be any benefit of either descending lower in a squat (past parallel) or going “knees to chest” in a leg press machine for hypertrophy purposes?

    Next, “as the knee moves into flexion the patella moves onto the femur, and first contacts between 10-20 degrees of flexion…” Personally, I have patella mistracking going on. When I flex my quadriceps the knee shifts to the right which would leave me to believe my vastus lateralis muscle is stronger than my vastus medialis, like an imbalance. It is visually bigger too. Do you think that’s why some people may experience a little bit of pain within the first 10-20 degrees of knee flexion, I know I do.

    Finally, I’ve been around the infamous saying, “you have to squat” to get big and/or strong legs, especially for bodybuilding and powerlifting. I realize every situation is different but for tall guys like myself (over 6'4) with a long torso and long femurs sometimes I use exercises that are frowned upon such as smith machine squats or mostly leg presses for the majority of my quad progression.
    If one is to treat their training like an experiment (yep, read that article too) who’s to really say that person is wrong? Even in the realm of science?

    Dan Ogborn says:

    Hey JT, good to hear from you again, some solid questions here; you just gave me ideas for about five more blog posts!

    1) Descending lower in the squat may not have much of an effect on patellofemoral force, which may decrease slightly once you pass 90 degrees. It can decrease patellofemoral stress (force/contact area) as the contact between the patella and femur increases. I don’t think this would necessarily be of great benefit, but it means if someone can get pain-free all the way to 90 degrees of flexion, they should be able to go lower as well, at least from a patellofemoral perspective. From a general training perspective, if I can move through a full range of motion, I'll do it.

    2) The idea of patellar tracking and the relationship between VM and VL is definitely controversial, although the idea that those muscles can be imbalanced or that they can be preferentially activated in training is falling out of favor. That being said, improper tracking of the patella has been documented in cases of patellofemoral pain, just not always consistently, but still definitely relates to your observations.

    Newer literature suggests that medial rotation of the femur may also contribute to the problem, along with some lateral movement of the patella, and would still look like the knee is going the right as you described (See Souza et al. 2010 J Orthop Sports Phys Ther 40(5):277-285). This would lead me to believe that the muscles of the hip may be more responsible than the quads for the issue, and that taking time to address hip function may get you back to bilateral squatting, should you want to (See Powers 2010 J Orthop Sports Phys Ther 2010 40(2):42-51; and Meirra & Brumitt, 2011 Sports Health 3(5):455-465.).

    3) Sure you could have made a program centered on squats and kept the Internet gym police happy, but that likely wouldn’t have been a sustainable program for you given the pain that you have. This really highlights the difference between those who treat their training like an experiment (you), and those whose programs are based on peer pressure (the ‘squats and milk’ crowd). You encountered a problem, tested a solution, and used what worked. As long as you’re progressing towards your goal, you can’t really be wrong!

    Integrating my response to #2, I think what you’ve done already was great, identified exercises you can do that will keep your training on track, and I’m not surprised that split leg variations (lunges) have made it into your programming. While traditional squats call on the glutes as well, these split leg variations really challenge the glutes to maintain femoral positioning, and may have more of a benefit through their effects on the hip muscles than their degree of quad loading. Add some specific exercises to address glute activation and strength on top of these and I think you may have a recipe to eventually return to bilateral squats, again, only if you want to.

    Bret Contreras has many videos on his site of the specific exercises that would give you an idea of where to start, better than I could convey in the comment section here. http://home3/danogbor/public_html.bretcontreras.com

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Share on Facebook
Share on Twitter
Subscribe to Newsletter

Dan Ogborn